Gradient light interference microscopy for 3D imaging of unlabeled specimens
نویسندگان
چکیده
منابع مشابه
Gradient field microscopy of unstained specimens
We present a phase derivative microscopy technique referred to as gradient field microscopy (GFM), which provides the first-order derivatives of the phase associated with an optical field passing through a transparent specimen. GFM utilizes spatial light modulation at the Fourier plane of a bright field microscope to optically obtain the derivatives of the phase and increase the contrast of the...
متن کاملCardiomyocyte Imaging Using Real-Time Spatial Light Interference Microscopy (SLIM)
Spatial light interference microscopy (SLIM) is a highly sensitive quantitative phase imaging method, which is capable of unprecedented structure studies in biology and beyond. In addition to the π/2 shift introduced in phase contrast between the scattered and unscattered light from the sample, 4 phase shifts are generated in SLIM, by increments of π/2 using a reflective liquid crystal phase mo...
متن کاملInstantaneous Spatial Light Interference Microscopy.
We present Instantaneous Spatial Light Interference Microscopy (iSLIM) as a new quantitative phase method that combines the benefits of white light illumination in Zernike's phase contrast microscopy and phase stability associated diffraction phase microscopy. iSLIM is implemented as an add-on module to a commercial phase contrast microscope, and enables new features to quantitative phase imagi...
متن کاملHomographically generated light sheets for the microscopy of large specimens.
We compare the performance of linear and nonlinear methods for aligning the excitation and detection planes throughout volumes of large specimens in digitally scanned light sheet microscopy. An effective nonlinear method involves the registration of four corner extrema of the imaging volume via a projective transform. We show that this improves the light collection efficiency of the commonly us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/s41467-017-00190-7